ProphetesAI is thinking...
inn
Answers
MindMap
Loading...
Sources
inn
▪ I. inn, n. (ɪn) Forms: 1– inn, 1–7 in, 3–7 inne, (3 hynne, 4 hin), 4–5 yn, 4–6 ine, ynne, (5 hyn, 6 ynn). [OE. inn neut.:—OTeut. *inno{supm}: agreeing, exc. in stem suffix, with ON. inne, inni (:—OTeut. *innjo{supm}), f. inn, inne in adv.] † 1. A dwelling-place, habitation, abode, lodging; a house...
Oxford English Dictionary
prophetes.ai
inn
inn/ɪn; ɪn/ n(Brit) public house or small old hotel where lodgings, drink and meals may be had, now usu in the country 客栈, 小而旧的旅馆(现多指乡村的). Cf 参看 hotel.
牛津英汉双解词典
prophetes.ai
$G$ a non-abelian group of order $p^3$. Show that $Inn(G)$ is abelian. > Let $G$ be a non-abelian group of order $p^3$ for prime $p$. Show that $Inn(G)$ is abelian. The center of $G$, $Z(G)$, is of order $p$ (can be ...
We can prove that any group $G$ of order $p^2$ is abelian. If $|Z(G)|=p^2$, then done. If $|Z(G)|=p$, then $G/Z(G)=p$ and so $G/Z(G)$ is cyclic. Suppose $hZ(G) (h\in G,h\notin Z(G))$ is the generator of $G/Z(G)$. Then for any $g_1,g_2\in G$, there is $g_1=h^nz_1, g_2=h^mz_2$, where $z_1,z_2\in Z(G)$...
prophetes.ai
Inn characteristic in Aut If $G$ is a centerless group then is $\mathrm{Inn}(G)$ necessarily characteristic in $\mathrm{Aut}(G)$? The condition of being centerless is necessary as $D_8$ provides a counterexample oth...
Answers from the comments (hence CW): > This is only true if $\textrm{Aut}(G)$ is a complete group; that is, $\textrm{Aut}(G) \cong \textrm{Aut}(\textrm{Aut}(G))$ via the canonical homorphism $Aut(G)\to Aut(Aut(G))$. In particular, $G=S_{3} \times S_{3}$ is a counterexample. – Steve D > @SteveD In f...
prophetes.ai
Inner automorphisms Inn(D4). We need to show that elements of $Inn(D_4)$ are distinct , where , $Inn(D_4)= \phi_{{R_0}} , \phi_{{R_{90}}} , \phi_{H} , \phi_{D}$. Is it sufficient to construct a Cayley table for the...
The question is not whether the set is closed under multiplication. The question is to show that they are all different. The automorphisms are functions. Functions with the same domain and range are the same if they have the same values. To show two of the functions aren't the same, find an element ...
prophetes.ai
By analyzing the map $G \rightarrow$ Aut(G) given by $g \rightarrow \phi_g$, identify Inn(G) as a quotient of G. By analyzing the map $G \rightarrow\operatorname{Aut}(G)$ given by $g \rightarrow \phi_g$, identify $\op...
The image of your map (let us call it $\phi$) is, by definition, $\operatorname{Inn}G$. Therefore, $\operatorname{Inn}G\simeq G/\ker\phi$.
prophetes.ai
东横INN
在全面清查后,全日本的东横INN共被有60间旅馆违反日本建筑基本法中的高龄者与身体障碍者的相关保护法令,同时有77件违法改造案件。此事件造成日本国土交通省撤销了东横INN集团旗下「东横INN开发公司」的建筑师执照。原社长西田宪正也在5月底卸下社长职务,改担任无实际业务权力的「取缔役会长」。 注释
外部连结
东横INN日文网站
东横INN韩文网站
东横INN繁体中文网站
东横INN简体中文网站
T
连锁旅馆
T
wikipedia.org
zh.wikipedia.org
Find Aut$(G)$, Inn$(G)$ and $\dfrac{\text{Aut}(G)}{\text{Inn}(G)}$ for $G = \mathbb{Z}_2 \times \mathbb{Z}_2$ Find Aut$(G)$, Inn$(G)$ and $\dfrac{\text{Aut}(G)}{\text{Inn}(G)}$ for $G = \mathbb{Z}_2 \times \mathbb{Z}_...
Then you can use a little proposition (Humphreys pg.73-74) that tells you $\text{Inn}(G) \approx \frac{G}{\text{Z}(G)}$
The proof of this prop in a few
prophetes.ai
旅馆恋曲 Falling Inn Love
盖布拉瑞(克里斯蒂娜·米利安 Christina Milian 饰)刚刚结束了一段失败的恋情,成为了被甩的哪一方,祸不单行的是,她在旧金山的设计公司也因为经营不善而关门大吉了。事业和爱情受到双重打击的盖布拉瑞只能够依靠酒精来排遣内心的郁闷。 一次偶然中,盖布拉瑞参加抽奖活动,竟然获得了一间位于新西兰乡间的旅馆的所有权。坐上了飞机飞行了数千公里,盖布拉瑞终于见到了这座属于自己的旅馆,然而这间破破烂烂的房子让盖布拉瑞失望透顶。于是,盖布拉瑞决定和名叫杰克(亚当·迪莫斯 Adam Demos 饰)新西兰承包商合作,将旅馆翻新并且出售,在此过程中,盖布拉瑞遇到了很多令她啼笑皆非的意外。
豆瓣
movie.douban.com
Find the inner and outermorphisms of a particular dihedral group Given that |Inn($D_8$)| = 8 and |Out($D_8$)| = 2 where Out($D_8$) = Aut($D_8$)/Inn($D_8$) and $D_8$ = {e,r,$r^2$,..,$r^7$,s,sr,...,$sr^7$} we want to fi...
**Hint:** There is always a surjective homomorphism $G \to \mathrm{Inn}(G)$ given by sending $g$ to conjugation by $g$. If you figure out the kernel, $K$, of this homomorphism then $\mathrm{Inn}(D_8) \simeq D_8/K$ and $D_8/K$ will be pretty easy to understand.
prophetes.ai
awk evaluate variable in statement I am new to `awk`, I tried numerous suggestion found online, but I cannot resolve my problem. I need variable `$number` to get evaluated inside the -F arg value. This statement work...
vth=$(echo "$inn" | awk -F ' '"$number"': |@' '{print $2}')
* be sure to have your shell as a bash (e.g. first line is `#! /bin/bash` )
* if you don't need `$inn` elsewhere, use `vth=$( ip ad | ... )`
* I can't reproduce `@` in result of `ip a s` (or `ip ad` )
to catch
prophetes.ai
I have a question about group $G$ which satisfies Inn$(G) $ char Aut$(G)$ and $Z(G)$=$\{1\}$. Let $G$ be a group which satisfies $Z(G)=\\{1\\}$ and ${\rm Inn(G)} \space \mathbb{char} \space {\rm Aut(G)}$; then every a...
Let $I = {\rm Inn}\, G$ and $C = C_{{\rm Aut}(A)}(I)$. Then $C \unlhd {\rm Aut}(A)$ and $A \unlhd {\rm Aut}(A)$.
prophetes.ai
$|$Inn$(S_2)|$ and $|$Aut$(S_2)|$ Is it true that $|$Inn$(S_2)|=1$? This is what I calculated but I want to double-check. Also, does $|$Aut$(S_2)|=1$? I can't think of a non-inner automorphism of $S_2$.
As said DonAntonio in the comment above, $S_2$ is just the cyclic group of order $2$, isomorphic to $(\\{-1,+1\\}, \cdot)$. An automorphism $f : S_2 \to S_2$ must map $(1)$ to $(1)$, and since $f$ is injective, it must map $(1 \; 2)$ to $(1 \; 2)$. Therefore $f$ is the identity of $S_2$. Any inner a...
prophetes.ai
Prove that $\operatorname{Inn}(\operatorname{Aut}(G)) \cong \operatorname{Aut}(G)$ Suppose that $G$ is a group with trivial center. Prove that: $$\operatorname{Inn}(\operatorname{Aut}(G)) \cong \operatorname{Aut}(G)$$
**Hint:** Show that the map from $a$ to $f_a(x)=axa^{-1}$ from Aut$(G)$ to Inn$(\operatorname{Aut}(G))$ is an isomorphism
prophetes.ai
Prove that $ x \in Z(G) \to G \ncong \text{Inn}(G) $. Let $G$ be a group and $x, a \in G$ where $x=a^2$. Then $x\in Z(G) G≇ Inn(G)$. I have already shown that if $x=b^{-1}a$, then $G≇Inn(G)$ since $\phi_{a}=\phi_{b}...
_Hint._ Let $\phi:G\rightarrow \operatorname{Aut}(G)$ be defined by $\phi(g)=\theta_g$, where $\theta_g$ is the automorphism $\theta_g(x)=g^{-1}xg$. 1. What is the image of $G$ under $\phi$? 2. What is $\operatorname{ker}\phi$? > Is $\phi$ an isomorphism?
prophetes.ai