_Hint._ Let $\phi:G\rightarrow \operatorname{Aut}(G)$ be defined by $\phi(g)=\theta_g$, where $\theta_g$ is the automorphism $\theta_g(x)=g^{-1}xg$.
1. What is the image of $G$ under $\phi$?
2. What is $\operatorname{ker}\phi$?
> Is $\phi$ an isomorphism?