formular

answer Answers

ProphetesAI is thinking...

MindMap

Loading...

Sources

1
formular
formular, a. and n. (ˈfɔːmjʊlə(r)) [ad. L. type *formulār-is, f. formula. As n., a. F. formulaire. See -ar1, -ar2.] A. adj. 1. Formal, correct or regular in form.1773 Johnson in Boswell 29 Apr., A speech on the stage, let it flatter ever so extravagantly, is formular. It has always been formular to ... Oxford English Dictionary
prophetes.ai 0.0 3.0 0.0
2
Formular Column Displaying Percentages
Jul 17, 2023 — Click the overall calculation field at the bottom of the group to open a customization panel, and select the percentage ...
community.monday.com 0.0 1.5 0.0
3
Formular stationery
Formular stationery require the addition of an adhesive stamp before posting. References External links Formular Postal Stationery of Luxembourg Postal stationery Philatelic terminology Envelopes wikipedia.org
en.wikipedia.org 0.0 0.90000004 0.0
4
Derivative with constant in the denominator I have the formular $\frac{d(y(t)*a)}{d(t*b)}$ with a and b being constants, which can be changed to $\frac{a}{b}\frac{d(y(t))}{d(t)}$. My question is why this is possible?...
Write $w=y(t)a$ and $z=tb$. Then $$\frac{dw}{dt}=a\frac{d(y(t))}{dt}.$$ Since $t=\frac{z}{b}$, we get $$\frac{dt}{dz}=\frac{1}{b}.$$ Hence, $$\frac{d(y(t)a)}{d(tb)}=\overbrace{\frac{dw}{dz}=\frac{dw}{dt}\cdot\frac{dt}{dz}}^{\text{Chain Rule}}=a \frac{d(y(t))}{dt}\cdot\frac{1}{b}=\frac{a}{b}\cdot\fra...
prophetes.ai 0.0 0.6 0.0
5
how to prove the convolution formular? let $\overset{\backsim} {g}(x)=g(-x)$; suppose $u,\phi,\psi$ always make the integral significant,$E_n$ is the n-dimensional euclidean space. Then how to prove $\int_{E_n}(u*\p...
We have \begin{align*} \int_{E_n} (u * \phi)(x)\psi(x)\, dx &= \int_{E_n} \int_{E_n} u(y)\phi(x-y)\, dy\,\psi(x)\, dx\\\ &= \int_{E_n} \int_{E_n} u(y)\phi(x-y)\psi(x)\, dx\, dy\\\ &= \int_{E_n} u(y) \int_{E_n} \overset\backsim\phi(y-x)\psi(x)\,dx\, dy\\\ &= \int_{E_n} u(y)(\overset\backsim\phi * \ps...
prophetes.ai 0.0 0.6 0.0
6
what is the explicit form of this iterativ formular I am not sure, if there is an explicit form, but if there is, how do I get it? This is the formula: $$c_n=\frac{1-n \cdot c_{n-1}}{\lambda}$$ where $\lambda \in \m...
The expression for $c_n$ is $$c_n=\frac{(-1)^n n!}{\lambda^{n+1}}\left\\{S_{n}(-\lambda)+\lambda c_0-1\right\\}$$ where \begin{equation}S_n(x)=\sum_{k=0}^n\frac{x^k}{k!} \end{equation} for all $x \in \mathbb{R}$. I prove it inductively. For $n=1$ the proposed expression begets $$-\frac{1}{\lambda^2}...
prophetes.ai 0.0 0.3 0.0
8
Where does this formular for rotating a vector in 3D space around another 3D vector comes from? I found this formular: $\mathbf{R}_{\vec{n}}(\alpha)\vec{x}=\vec{n}(\vec{n}\cdot\vec{x})+\cos(\alpha)(\vec{n}\times\vec{x...
That is just another flavor of the Rodrigues rotation formula: < which can be found in german text books for sure. Proof: Rodrigues formula is: $$v' = \cos(\theta) v + \sin(\theta) n \times v + (1 - \cos(\theta)) n (n \cdot v)$$ which can also be written as: $$v' = n (n \cdot v) + \cos(\theta) (v - ...
prophetes.ai 0.0 0.3 0.0
9
Excel FormulaR1C1格式引用 - 知乎
R1C1格式引用中,R代表行(Row),C代表列(Column),有绝对引用、相对引用以及混合引用三种用法: 相对引用相对引用指的是相对于"活动单元格"的位置,R正向下;R负向上;C正向右;C负向左。关于正负及方向非常容易…
zhuanlan.zhihu.com 0.0 0.3 0.0
10
中国除了葬尸湖还有哪些有实力的金属乐队?
有一些乐队和上面残死是重叠的,重叠的没有写出来):肆伍乐队,暗星乐队,利维坦,惊乐队,变态少女乐队,beyond cure,破茧而出,堕天乐队,scarlet horizon,last gasp,berserker 前卫金属/前卫金属核:猎魔人,von citizen,牢铝(同时也是数学摇滚),直惘乐队,樟脑丸,fancy formular zhihu
www.zhihu.com 0.0 0.3 0.0
11
Find $\sin(\frac{x}{2})$, given $\tan(x) = 2$, with $0 < x < \frac{\pi}{2}$. Find $\sin(\frac{x}{2})$, given $\tan(x) = 2$, with $0 < x < \frac{\pi}{2}$. Which half-identity formular should I use and why?
$\tan^2 x + 1 =\sec^2 x\\\ \sec x = \sqrt 5\\\ \cos x = \frac {1}{\sqrt 5}\\\ \sin \frac{x}{2} = \sqrt {\frac {1-\cos x}{2}}$
prophetes.ai 0.0 0.0 0.0
12
等直圆轴与圆管的扭转 | 杆件计算 | 机械工程常用公式计算
扭矩作用下的剪切应力计算公式: 计算公式:τmax=Mt/Wt≤τp
www.mechtool.cn 0.0 0.0 0.0
13
The result of exponential sum formula I am awakard to deal with math problem !enter image description here I am trying to understand the first condition that is (k-r)=mN I can understand when (k-r) is mN, the left ...
Your calculation, if I read it correctly, is right. However, $$e^{(j)(2\pi)(k-r)}=1,$$ since $k-r$ is an integer. It follows that the expression $1-e^{(j)(2\pi)(k-r)}$ that we get on top when summing the geometric series is equal to $0$. If $k-r$ is not of the shape $mN$, the result is $0$, since th...
prophetes.ai 0.0 0.0 0.0