Write $w=y(t)a$ and $z=tb$. Then $$\frac{dw}{dt}=a\frac{d(y(t))}{dt}.$$ Since $t=\frac{z}{b}$, we get $$\frac{dt}{dz}=\frac{1}{b}.$$ Hence, $$\frac{d(y(t)a)}{d(tb)}=\overbrace{\frac{dw}{dz}=\frac{dw}{dt}\cdot\frac{dt}{dz}}^{\text{Chain Rule}}=a \frac{d(y(t))}{dt}\cdot\frac{1}{b}=\frac{a}{b}\cdot\frac{d(y(t))}{dt}.$$