ProphetesAI is thinking...
-ic
Answers
MindMap
Loading...
Sources
-ic
-ic (formerly -ick, ik(e, -ique), suffix, primarily forming adjs., many of which are used as ns. The latter have also the form -ics: see 2. 1. In adjs., immediately representing F. -ique, ad. L. -ic-us, of Latin origin, as in cīvic-us, classic-us, public-us, domestic-us, aquātic-us, or ad. Gr. -ικ-ό...
Oxford English Dictionary
prophetes.ai
-ic
-ic/-ɪk; -ɪk/ suff後缀1 (with ns forming adjs and ns 与名词结合构成形容词和名词) of or concerning ...的;关於...的 poetic * scenic * Arabic.2 (with vs ending in -y forming adjs 与以y结尾的动词结合构成形容词) that performs the specified action 表示该动词所指动作或行为的: horrific * specific.
牛津英汉双解词典
prophetes.ai
Patents - ic
How to file a patent application (in Canada, abroad or through the Patent Cooperation Treaty), request examination in Canada and fast track examination. A list of fees for patent filing, examination, maintenance and other patent services. Pay maintenance fees and maintain your patent protection. Raise questions about the patentability of a ...
ised-isde.canada.ca
$IC(U\cap V)$ VS $IC(U)\cap IC(V)$ Let $(X, \tau)$ be a topological space, $U,V\subseteq X$ any subsets of $X$ . Let $I(A)$ denotes a interior of subset $A$ and $C(A)$ denotes closure of subset $A$. It is clear that...
**It is true more general fact.** **Proposition.** If $U$ is open and $A$ an arbitrary subset of $X$, then $IC(U)\cap IC(A)\subseteq IC(U\cap A)$. > **Proof**. Suppose $$x\in IC(U)\cap IC(A)$$. $x\in IC(U)\cap IC(A)$ iff there exists $U'$ an open neighborhood of $x$ such that $U'\subseteq C(U)\cap C...
prophetes.ai
IC
IC或Ic可以指:
集成电路(Integrated Circuit)
初值问题(Initial Condition)
伦敦帝国学院(Imperial College London)
索引星表(Index Catalogue)
无异曲线(Indifference Curve)
交流道(Interchange)
智慧卡(IC card)
城际列车 (德国)(Intercity)
wikipedia.org
zh.wikipedia.org
IC实验室
一个多月前,FBI突袭调查了预测市场Polymarket创始人夏恩·科普兰的家,还没收了他的手机,这件事在全美舆论界,引发了轩然大波。就在这次调查前一个礼拜,Polymarket靠着对美国大选的精准预测一战成名。那么,预测市场又是什么?Polymarket又是为什么在这届大选一举杀入主流视野,成为预测选举结果的重要指标?本期视频,我们来一探究竟。
m.huxiu.com
m.huxiu.com
Complex exponential arrangement > Let > > $$z = e^{-\frac{a}{b + ic}}$$ > > (where $i$ is the imaginary unit and $a,b,c \in \mathbb{R}$) be a complex number in exponential form. > > Write $z$ in the following form...
**Purely imaginary $B$** The real $A$ is unique. This is because when $z=\rho e^{i\theta}\in\mathbb{C}\backslash\\{0\\}$ where $\rho\in\mathbb{R}^+$ and $\theta\in\mathbb{R}$, $\rho$ is unique as $\rho=|z|$. To have the desired form, the only possibility for $A$ is such that $e^{-A}=\rho$, and that ...
prophetes.ai