**It is true more general fact.**
**Proposition.** If $U$ is open and $A$ an arbitrary subset of $X$, then $IC(U)\cap IC(A)\subseteq IC(U\cap A)$.
> **Proof**. Suppose $$x\in IC(U)\cap IC(A)$$. $x\in IC(U)\cap IC(A)$ iff there exists $U'$ an open neighborhood of $x$ such that $U'\subseteq C(U)\cap C(A)$.
>
> Let us denote $$U'\cap U=V_1$$ and $$U'\cap A=V_2.$$ $$U'\subseteq C(U'\cap C(U))\subseteq C(U'\cap U)=C(V_1)$$ $$U'\subseteq C(U'\cap C(A))\subseteq C(U'\cap A)=C(V_2)$$ $$U'\subseteq C(V_1)=C(U'\cap U)=C((U'\cap U)\cap U') \subseteq C((U'\cap U)\cap C(V_2))= \ = C((U'\cap U)\cap C(U'\cap A))\subseteq C((U'\cap U)\cap (U'\cap A))=C(V_1 \cap V_2)$$ We get $$U'\subseteq C(V_1 \cap V_2)=C(U'\cap (U\cap A))\subseteq C(U\cap A)$$ then $$x\in IC(U\cap A).$$