con

answer Answers

ProphetesAI is thinking...

MindMap

Loading...

Sources

1
con
▪ I. con, n.5 Brit. /kɒn/, U.S. /kɑn/ [Shortened <convention n.] Esp. among enthusiasts of science fiction and role-playing games: a convention, an organized gathering of people with a shared interest. Freq. as the final element in the names of such events.1944 J. B. Speer Fancyclopedia 55/1 In t... Oxford English Dictionary
prophetes.ai 0.0 3.0 0.0
2
con
con/kɔn; kɑn/ n[sing](sl 俚) instance of cheating sb; confidence trick 欺骗; 骗局 This so-called bargain is just a con! 这种所谓的大减价不过是个骗局! [attrib 作定语]a con trick 欺骗的手段 He's a real con artist/merchant, ie swindler. 他是个不折不扣的假艺术家[商人](骗子). con, v (-nn-) [Tn, Tn.pr]~ sb (into doing sth/out of sth) (infml 口) swi... 牛津英汉双解词典
prophetes.ai 0.0 1.5 0.0
3
Con(PA) implies consistency of $\mathsf{PA}$ + ¬Con($\mathsf{PA}$) The Wikipedia article for $\omega$-consistency says "Now, assuming PA is really consistent, it follows that $\mathsf{PA}$ + ¬Con($\mathsf{PA}$) is als...
If $\sf PA+\lnot \rm Con\sf (PA)$ is inconsistent but $\sf PA$ is consistent, then in every model of $\sf PA$ it is true that $\rm Con\sf (PA)$, now by
prophetes.ai 0.0 0.90000004 0.0
5
If $\operatorname{Con}(\mathrm{PA})$, then $\operatorname{Con}(\mathrm{PA}+\operatorname{Con}(\mathrm{PA}))$? Assume $\newcommand\PA{\mathrm{PA}}\newcommand\Con{\operatorname{Con}}$ that $\PA$ is consistent. Then we ...
I assume that you mean can we prove from $\newcommand\PA{\mathsf{PA}}\newcommand\Con{\operatorname{Con}}\PA+\Con(\PA)$ the statement $\Con(\PA+\Con(\PA Note that $$\PA\vdash\Con(\PA)\rightarrow\Con(\PA+\Con(\PA))\iff\PA+\Con(\PA)\vdash\Con(\PA+\Con(\PA)),$$ so the above argument shows that indeed the implication
prophetes.ai 0.0 0.6 0.0
6
DEF CON
参考链接 外部链接 DEF CON 快速问答 多媒体资料 DEF CON: The Documentary DEF CON: The Documentary on IMDb A first ever look inside the DEF CON NOC (2008) The Story of DEF CON - video interview with Jeff Moss, a.k.a. wikipedia.org
zh.wikipedia.org 0.0 0.3 0.0
7
Why does $\operatorname{Con}(\operatorname{Con}(\Gamma)) = \Gamma$? I'll understand if it was > $\Gamma \subseteq \operatorname{Con}(\operatorname{Con}(\Gamma))$ but why equals? There should be other formulas in $\...
I am certain that this is a typo, and should read "$Con(Con(\Gamma))=Con(\Gamma)$". (X)$ and $Con(X)\subseteq Con(Con(X))$ by property $1$
prophetes.ai 0.0 0.3 0.0
8
对她说 Hable con ella
  马克(达里奥 葛兰帝内提Darío Grandinetti饰)和贝尼诺(加维埃尔·卡马拉Javier Cámara饰)在一场表演前都被深深感动。马克眼里泪光点点,坐在旁边的贝尼诺看到,心里被某种柔软的感情击到。本以为是萍水相逢,却不料这两个同病相怜的男人日后还有交集。   马克的女友莉迪亚(罗萨里奥·福罗雷斯Rosario Flores饰)本是一个职业斗牛士,比赛场上的意外令她变成了植物人。现在莉迪亚就躺在贝尼诺的诊所里接受治疗。马克每天来到这里,盼望莉迪亚能苏醒过来。   其实,贝尼诺也在这里守着他的爱情,一守就是四年。女孩阿里西亚(蕾欧诺·瓦特林 Leonor Watling饰)是一个... 豆瓣
movie.douban.com 0.0 0.3 0.0
9
ES CON FIELD HOKKAIDO
ES CON FIELD HOKKAIDO,是日本一座棒球场,位于北海道北广岛市。这座球场在2020年4月动工兴建,由HKS公司和大林组负责设计和施工,岩田地崎建设也参与施工。2023年3月作为日本职棒北海道日本火腿斗士队(以下简称「日本火腿」)的新主场开业。 2020年1月,包括新球场在内的球场区域名称定名为「北海道棒球园区F村」,不动产公司日本ES-CON取得冠名权,新球场冠名为「ES CON FIELD HOKKAIDO」。4月13日,举行了开工仪式。建设工作由大林组所主导的团队共同承揽。 wikipedia.org
zh.wikipedia.org 0.0 0.3 0.0
10
Relative interpretations In Kunen's Set theory (2011), he says that there is a finitistic proof that $ $Con$(ZF^-)\implies $Con$(ZF)$. He also mentions elsewhere that if $\Theta$ is at least as strong as finitistic re...
Look at the third and fourth paragraphs of the answer you linked to. There Andres Caicedo gives a syntactic argument, which looks finitistic to me. What exactly leads you to believe that you need something stronger than finitistic reasoning for this argument?
prophetes.ai 0.0 0.3 0.0
11
Joy-Con
设计 Joy-Con成对搭配,每对包括左右两只,即“Joy-Con L”和“Joy-Con R”。每只大小均为10.2厘米×3.6厘米×2.8厘米,左右手柄重量分别为49克和52克。 Joy-Con还有配套的“Joy-Con握把”外设,可让Joy-Con当作传统游戏手柄玩,握把有充电版和不带充电版。 Joy-Con从主机上卸除后,左右两只可分别自主操作,通过蓝牙和主机通信。 wikipedia.org
zh.wikipedia.org 0.0 0.0 0.0
12
Con ZF implies Con ZFC using set sized models Can we use forcing to construct models of ZFC and ZFC + GCH starting from c.t.m s of ZF? The usual way to obtain the associated relative consistency results (Con ZF implie...
Not always. There are models of $\sf ZF$ which cannot be extended to models of $\sf ZFC$ without adding ordinals. Since forcing is a technique which does not add ordinals, this means that this is impossible. Note that when I say that, I include class-forcing as well. Moreover, if you only limit your...
prophetes.ai 0.0 0.0 0.0
13
Are $\sf ZF+Con(\sf ZF),\sf ZFC+Con(\sf ZF)$ equiconsistent? It's very well known that (over base theory being $\sf ZF$) theories $\sf ZF$ and $\sf ZFC$ are equiconsistent. Is the same known to be true about $\sf ZF+C...
Yes. Given an arithmetic statement $\varphi$, $\sf ZF+\varphi$ is equiconsistent with $\sf ZFC+\varphi$. To see why, first note that one implies the other trivially. If $\sf ZFC+\varphi$ holds, then $\sf ZF+\varphi$ is certainly true. In the other direction if $M$ is a model of $\sf ZF+\varphi$, the...
prophetes.ai 0.0 0.0 0.0
14
UTA-CON
为日本NHK综合台于2016年4月12日开始,在NHK大厅采直播放送的音乐节目。 节目介绍 自从《》(1993年4月17日-2016年3月15日)结束后,为了满足所有年龄层的观众,除了流行歌曲外,传统的老歌和演歌也会在此节目中演出。歌手演唱时的背景音乐是由节目专属乐队伴奏,通常管弦乐演奏者会在演出当天练习乐谱,约一到两次的合音排练。 播出时间 出演人员 主持人 乐队指挥 参考资料 外部连结 うたコン NHK电视音乐节目 2016年日本电视节目 wikipedia.org
zh.wikipedia.org 0.0 0.0 0.0
15
MAMAMOO WORLD TOUR "MY CON"
MY CON是韩国女子音乐组合MAMAMOO以第十二张迷你专辑《MIC ON》为主题所举行的专场演唱会,也是出道首次的大型单独巡回演唱会,除宣传第十二张迷你专辑以外,演唱会歌单亦包含出道至今所发行过的音乐专辑,包括《TRAVEL》、《White Wind》、《BLUE;S》、《Red Moon》、《Yellow wikipedia.org
zh.wikipedia.org 0.0 0.0 0.0