Artificial intelligent assistant

non-standard exponential-squared fog attenuation I inherited a formula that I'm hoping to simplify. $d = \frac{\sqrt{-\log_2(t)}}{f\sqrt{\ln(2)}}$ Any ideas? Thanks, Jason EDIT (for context): This formula determines the exponent for exponential-squared fog attenuation. **d** stands for density, which is usually not so complicated, and the typical final usage is: $\frac{1}{e^{{distance * density}^2}}$

> Use:
>
> * $$\log_x(y)=\frac{\ln(y)}{\ln(x)}$$
>
> * * *
>
>


So:

$$\text{d}=\frac{\sqrt{-\log_2(t)}}{\text{f}\sqrt{\ln(2)}}=\frac{\sqrt{-\frac{\ln(t)}{\ln(2)}}}{\text{f}\sqrt{\ln(2)}}=\frac{\frac{\sqrt{-\ln(t)}}{\sqrt{\ln(2)}}}{\text{f}\sqrt{\ln(2)}}=\frac{\sqrt{-\ln(t)}}{\text{f}\ln(2)}$$

xcX3v84RxoQ-4GxG32940ukFUIEgYdPy ff1953387ee9584c4cafe8e96459e7a4