Let's assume that $\exists\lambda\
eq 1,\, I-\lambda P$ non inversible. This means that $\exists x\in\mathbb{K}^n,\, x\
eq 0\land x=\lambda Px$. And this leads immediately by multiplying by $P$ to the left to $Px=\lambda Px$ i.e $(1-\lambda)Px=0$ and because $\lambda\
eq 1$ we have $Px=0$ and therefore $x=\lambda Px=0$ a contradiction and we have proven $\forall \lambda\
eq 1,\, I-\lambda P$ inversible. This answers the question.
Now if we want to find the inverse denote for $\lambda\lt 1$
$$ Q = \sum_{n=1}^{\infty} (\lambda P)^n = (\sum_{n=1}^{\infty} \lambda^n) P \\\ =\lambda(1-\lambda)^{-1}P $$
Now for $\lambda\
eq 1$ let's compute keeping in mind $P^2=P$
$$(I-\lambda P)(I+Q)=(I-\lambda P)(I+{\lambda\over 1-\lambda}P)=I$$
And the inverse is the one given in the book