Not even locally, no. A 'simple' counter-example can be obtained by taking $\lambda=0$ and $f$ given by
$$f(x)=x^2\cdot \exp\left({\sin\left(\frac1x\right)}\right),$$
where of course $f(0)=0$. Then $f(x)>0$ when $x\
eq 0$, so that $x=0$ is a (global) minimum, but $f$ is never monotone near $x=0$.
You can check that $f$ is everywhere differentiable, although its derivative is not continuous. That said, if you take $f(x)=x^4\cdot \exp\left({\sin\left(\frac1x\right)}\right)$, then all of these hold and additionally $f'$ is everywhere continuous (differentiable in fact).