Let $f$ be even and $\gamma(t)=z+re^{2i\pi t}$ so
$$res_{z}f = \frac{1}{2i\pi}\int_{0}^{1}f(\gamma(t))\gamma'(t)dt = -\int_{0}^{1}f(-\gamma(t))(-\gamma'(t))dt$$
but since $\beta(t)=-\gamma(t)=-z-re^{2i\pi t}$ is a parametrization of $S_r(-z)$, so $$res_{z}f = -\int_{0}^{1}f(\beta(t))(\beta'(t))=-res_{-z}f$$
the odd case is the same.