But you already have it...almost:
$$|f(z)|=\frac1{|z-a|^m}\left|a_{-m}+a_{m+1}(z-a)+\ldots\right|$$
and now just observe that
$$\left|a_{-m}+a_{m+1}(z-a)+\ldots\right|\xrightarrow[z\to a]{}|a_{-m}|$$
But you already have it...almost:
$$|f(z)|=\frac1{|z-a|^m}\left|a_{-m}+a_{m+1}(z-a)+\ldots\right|$$
and now just observe that
$$\left|a_{-m}+a_{m+1}(z-a)+\ldots\right|\xrightarrow[z\to a]{}|a_{-m}|$$