1. There is no way to order complex numbers, in a way that preserves operations in a sensible way. The precise term is ordered field; among their properties, $x^2 \ge 0$ for every $x$. Since $i^2=-1$, we would need $-1\ge 0$, which is impossible.
2. However, if you want to measure _distance_ , you can do that with a norm#Euclidean_norm_of_a_complex_number). In the complex numbers, this is calculated as $|a+bi|=\sqrt{a^2+b^2}$. Hence, it is correct to say that $2i$ is twice as far from the origin as $i$ is.