If $X$ is a vector with Hermitian components, $$\langle\psi |X\cdot X|\psi\rangle=\sum_i\langle\psi |X_i^2| \psi\rangle=\sum_i\langle\psi |X_i^TX_i| \psi\rangle=\sum_i\Vert X_i|\psi\rangle\Vert^2\ge 0.$$
If $X$ is a vector with Hermitian components, $$\langle\psi |X\cdot X|\psi\rangle=\sum_i\langle\psi |X_i^2| \psi\rangle=\sum_i\langle\psi |X_i^TX_i| \psi\rangle=\sum_i\Vert X_i|\psi\rangle\Vert^2\ge 0.$$