$$\frac{\text{height}}{\text{distance}}=\tan(63°)\quad\text{and}\quad\frac{\text{height}}{\text{distance}+130}=\tan(49°)$$
therefore
$$\begin{align} &&\tan(63°)\times d&=d\times\tan(49°)+130\times\tan(49°)\\\ \implies &&d&=\frac{130\times\tan(49°)}{(\tan(63°)-\tan(49°))}\\\ \implies &&\text{height}&=\frac{\tan(63°)\times130\times\tan(49°)}{(\tan(63°)-\tan(49°))} \end{align}$$
And that, my friend, is what you have ($\approx361.35$).