You can factor out n:
$2^m=n\cdot \left( \frac{1+n}{2}+k \right)$
n has to be a faktor of $2^m$. Let it be $2^p$.
$2^m=2^p\cdot \left( \frac{1+2^p}{2}+k \right)$
multiplying the equation by 2.
$2^{m+1}=2^p\cdot \left(1+2^p+2k \right)$
The equation does not hold, because $1+2^p+2k$ is an odd number.
_Referring to the comment of robjohn:_
If $2^p=1$ and $k=2^m-1$ the equation becomes $2^{m+1}=1\cdot \left(1+1+2^{m+1}-2 \right)$ The equation holds in this case.