**Hint:**
Use an affine coordinate transform and set
$$p=(x_0,x_1,x_2)=a+u(b-a)+v(c-a).$$
The Jacobian of the transformation is the determinant of the matrix formed with $b-a$ and $c-a$, a constant (the area of the parallelogram built on $a,b,c$).
Then
$$\iint_T \,dx_i\,dx_j=J\int_{u=0}^1\int_{v=0}^u\,dv\,du.$$
$$\iint_T x_i\,dx_i\,dx_j=J\int_{u=0}^1\int_{v=0}^u(a_i+u(b_i-a_i))\,dv\,du.$$
$$\iint_T x_ix_j\,dx_i\,dx_j=J\int_{u=0}^1\int_{v=0}^u(a_i+u(b_i-a_i))(a_j+v(c_j-a_j))\,dv\,du.$$
We have
$$ \int_{u=0}^1\int_{v=0}^u1\,dv\,du=\frac12,\\\ \int_{u=0}^1\int_{v=0}^uu\,dv\,du=\frac13,\\\ \int_{u=0}^1\int_{v=0}^uv\,dv\,du=\frac16,\\\ \int_{u=0}^1\int_{v=0}^uuv\,dv\,du=\frac18.\\\ $$
By combining these results, you can easily obtain the integral of any quadratic function of $p$, such as yours,
$$f(p)=\frac{((p-a)\times(p-b))^2}{((c-a)\times(c-b))^2}=\frac{(p\times(b-a)+a\times b)^2}{((c-a)\times(c-b))^2}.$$