Let's see: if $\lambda$ is an eigenvalue of $A^*A$ then for some nonzero $x$, $$ \lambda \|x\|^2 = \langle \lambda x,x \rangle = \langle A^*A x,x\rangle = \langle Ax,Ax \rangle \ge 0.$$
Let's see: if $\lambda$ is an eigenvalue of $A^*A$ then for some nonzero $x$, $$ \lambda \|x\|^2 = \langle \lambda x,x \rangle = \langle A^*A x,x\rangle = \langle Ax,Ax \rangle \ge 0.$$