Couldn't you just define $\langle \cdot, \cdot \rangle : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ by $\langle x, y\rangle = x_1 y_1 - x_2y_2$?
**Linearity in first entry:**
Let $c \in \mathbb{R}$ and $x,y,z \in \mathbb{R}^2$, then
\begin{eqnarray*} \langle cx + y, z\rangle & = & (cx_1+y_1)z_1 - (cx_2 + y_2)z_2 \\\ & = & c(x_1z_1 - x_2z_2) + (y_1z_1 - y_2z_2) \\\ & = & c \langle x,z\rangle + \langle y,z\rangle. \end{eqnarray*}
**Symmetry:**
$$ \langle x,y\rangle \;\; =\;\; x_1y_1 - x_2y_2 \;\; =\;\; y_1x_1 - y_2x_2 \;\; =\;\; \langle y,x\rangle. $$
This demonstrates bilinearity, and I don't think you need positive-definiteness since this is a Lorentz metric.