**Direct Proof:**
Using the property of Modular arithmetic,
If $x\equiv{c}\pmod{d}$, where $x,c,d\in{\Bbb{Z}}$,
then $x^n\equiv{c^n}\pmod{d}$, where $n\in{\Bbb{Z}}$
Since $a\equiv{1}\pmod{5}$
So $a^2\equiv{1^2}\equiv1\pmod{5}$
**Non-modular Proof**
Let $a=5k+1$, $k\in{\Bbb{N}}$
$a^2=(5k+1)^2=25k^2+10k+1=5(5k^2+2k)+1=5P+1$, $P\in{\Bbb{N}}$
So $a^2\equiv1\pmod{5}$