Sum interpretation Is the interpretation of $$ \sum_{1 \leq j-1 \leq n}a_{j-1} $$ in that stile $$ \sum_{j-1=n}^{n}a_{j-1} $$ correct ? Can somebody give me a numerical example of that sum, please ?
You can write it as
$$\sum_{j = 1}^{n} a_j$$
xcX3v84RxoQ-4GxG32940ukFUIEgYdPy
f6b2068f1cc66b133889cc258585391d
Stop