Most non-normal matrices whose eigenvalues are pure imaginary will have this property. (Normal means $AA^* = A^*A$.)
E.g. $A = P D P^{-1}$ where $P$ is an invertible $2\times 2$ matrix that is not a multiple of a unitary matrix, and $D = \begin{bmatrix} 0 & -1 \\\ 1 & 0 \end{bmatrix}$: then $$ e^{tA} = P \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\\ \sin(\theta) & \cos(\theta) \end{bmatrix} P^{-1} = \cos(\theta)I + \sin(\theta) B ,$$ with $B = P D P^{-1}$.
E.g. $A = \begin{bmatrix} 0 & \lambda-1 \\\ \lambda+1 & 0 \end{bmatrix}$ if $-1 < \lambda < 1$.