1. The series $\sum_{n\geqslant 1}c_nX_n$ is convergent in $\mathbb L^2$ if $\sum_{n\geqslant 1}c_n^2$ converges (show that the sequence is Cauchy in $\mathbb L^2$ using the fact that $\sum_{n=N}^Mc_nX_n$ has a centered normal distribution with variance $\sum_{n=N}^Mc_n^2$.
2. For a fixed $t$, define $c_n:=\int\limits_0^\infty \xi _n(u) 1_{[0,t]} (u)d\mu (u)$. Then $c_n=\langle \xi_n,\mathbf 1_{[0,t]}\rangle$ and square summability of $\left(c_n\right)_{n\geqslant 1}$ follows from Parseval's inequality.