for the second one, take $C > D > 0,$ then $$ E = C^2 - D^2, \; \; \; F = C^2 + D^2 $$
If you wanted a system, take any $C,D \equiv 1 \pmod 4$ distinct primes, such as $5,13.$ We get the Pythagorean triple $16^2 + 63^2 = 65^2 = 5^2 13^2.$ Then $2 \cdot 5^4 + 2 \cdot 13^4 = (13^2 - 5^2)^2 + (13^2 + 5^2)^2 = 144^2 + 194^2.$