The limit of the function $$f(x) = \dfrac{1}{2}\dfrac{1-\tan(\pi/4-\pi 2^{-x})}{2^{-x}}$$
as $x\to\infty$ has "indeterminate form" of $0/0$, and so L'Hopital's works fine. Replace $2^{-x}$ with $a(x)$ for convenience, and note $a(x)\to 0$.
$$\,\, \dfrac{1}{2}\lim_{x\to\infty} \dfrac{1-\tan(\pi/4-\pi a(x))}{a(x)} =\,\, \dfrac{1}{2}\lim_{x\to\infty} \dfrac{-\sec^2(\pi/4-\pi a(x))\cdot (-\pi a'(x))}{a'(x)}$$
$$=\dfrac{1}{2}\lim_{x\to\infty} -\sec^2(\pi/4-\pi a(x))\cdot (-\pi) = \dfrac{\pi}{2}\sec^2(\dfrac{\pi}{4}) = \dfrac{\pi}{2}\cdot 2$$
and of course... if $f(x)\to L, f(n)\to L$.