The set $S$ is convex and symmetric, i.e., $-x \in S$ for all $x\in S$. If $x$ is an interior point of $S$ and $B(x,\varepsilon)\subseteq S$ (where $B(x,\varepsilon)$ is the ball around $x$ with radius $\varepsilon$) you get $B(0,\varepsilon/2)\subseteq S$ since for $\|y\| <\varepsilon/2$ you have $y= \frac 12 (-x) +\frac 12 (x+2y) \in \frac 12 S + \frac 12 S \subseteq S$.