It's right, but it can be made a bit simpler. First, a simple module $A$ is nonzero. If $f\colon A\to A$ is a homomorphism and $x\in A$, $x\
e0$, then there are two cases:
1. $x\in \ker f$
2. $x\
otin\ker f$
In case 1, $\ker f\
e\\{0\\}$, so $\ker f=A$ and $f$ is the zero map.
In case 2, $\ker f\
e A$, so $\ker f=\\{0\\}$ and $f$ is injective; moreover $f(x)\
e0$ and $f(x)\in\operatorname{im}f$, so $\operatorname{im}f=A$ and $f$ is surjective.
Of course, the key fact is that $\ker f$ and $\operatorname{im}f$ are submodules of $A$.