Working with vectors we have $$B-A_1 = \delta(A_1-C)$$ so $$A_1 = \frac{B+\delta C}{1+\delta}\\\ B_1=\frac{C+\delta A}{1+\delta}\\\ C_1= \frac{A+\delta B}{1+\delta} $$ Similarly $$A_2=\frac{\delta B_1 + C_1}{1+\delta}=\frac{\delta\frac{C+\delta A}{1+\delta}+\frac{A+\delta B}{1+\delta}}{1+\delta}=\frac{(\delta^2+1)A + \delta B+\delta C}{(1+\delta)^2}\\\ B_2=\frac{(\delta^2+1)B + \delta C+\delta A}{(1+\delta)^2}\\\ C_2=\frac{(\delta^2+1)C + \delta A+\delta B}{(1+\delta)^2}$$
Therefore $$A_2B_2=\frac{\delta^2+1-\delta}{(1+\delta)^2} AB$$ and the others, so the triangles $ABC$, $A_2B_2C_2$ are similar.
We can rewrite the above equalities as $$A_2= \frac{\delta^2-\delta+1}{(\delta+1)^2}A+\frac{3 \delta}{(\delta+1)^2}\frac{A+B+C}{3}$$
Therefore, the triangle $A_2B_2C_2$ is obtained from $ABC$ with a homothety with center the center of mass of $ABC$ and constant $\frac{\delta^2-\delta+1}{(\delta+1)^2}$