You could represent the function as a Fourier series:
$$g(x) = \sum_{n=-\infty}^{\infty} c_n \, e^{i n \pi x/2}$$
where
$$\begin{align}c_n &= \frac1{4} \int_{-2}^2 dt\, e^{-t} \, e^{-i n \pi t/2}\\\ &= \frac1{4} \int_{-2}^2 dt \, e^{-(1 + i n \pi/2) t}\\\ &= \frac{(-1)^n}{4(1 + i n \pi/2)}\left ( e^2-\frac1{e^2}\right ) \end{align}$$