Note: It seems $L$ is not angular momentum, but some length.
For the SI units we have: $$ [L] = \text{m} \\\ [\hbar] = \text{J}\text{s} = (\text{kg}\cdot (\text{m}/\text{s})^2) s = \text{m}^2 \cdot \text{kg} / \text{s} $$ And $$ [m] = \text{kg} \\\ [E] = J = \text{kg}\cdot (\text{m}/\text{s})^2 \\\ \left[\sqrt{m(E+V_0)}\right]= \text{kg}\cdot (\text{m}/\text{s}) = [p] $$ Combined we get: $$ \frac{\text{m}}{\text Js} \frac{\text{kg}\cdot\text{m}}{\text{s}} =\frac{\text{J}}{\text{J}} = 1 $$