Artificial intelligent assistant

Finding $\lim\limits_{x\to0}x^2\ln (x)$ without L'Hospital I am preparing a resit for calculus and I encountered a limit problem. The problem is the following: $\lim\limits_{x\to0}x^2\ln (x)$ I am not allowed to use L'Hospital. Please help me, I am stuck for almost an hour now.

Note that we should rather consider $$\lim_{x\to 0^+}x^2\ln x.$$ Substitute $x$ with $e^{-t}$ (this is possible for $x>0$) to get $$ \lim_{x\to 0^+}x^2\ln x=\lim_{t\to+\infty}(-t)(e^{-t})^2=\lim_{t\to+\infty}\frac{-t}{(e^t)^2}$$ and use our favorite estimate for the exponential function: $e^t\ge 1+t$, to get $$ \left|\lim_{x\to 0^+}x^2\ln x\right|\le \lim_{t\to+\infty}\left|\frac{-t}{(e^t)^2}\right|=\lim_{t\to+\infty}\frac{t}{(e^t)^2}\le \lim_{t\to+\infty}\frac{t}{(t+1)^2}=0.$$

xcX3v84RxoQ-4GxG32940ukFUIEgYdPy f08c575079c55a5767b92a5c74d7f421