Use the bounds $$1-\frac{1}{x}\leq \log(x)\leq x-1$$ for all $x>0$. For $x=\frac{n}{n-1}$ these become $$\frac{1}{n}\leq \log\left(\frac{n}{n-1}\right)\leq \frac{1}{n-1}.$$
Use the bounds $$1-\frac{1}{x}\leq \log(x)\leq x-1$$ for all $x>0$. For $x=\frac{n}{n-1}$ these become $$\frac{1}{n}\leq \log\left(\frac{n}{n-1}\right)\leq \frac{1}{n-1}.$$