Your three bullet points look fine, but you forgot to verify the fourth property, namely, $(AB)^+(AB)$ is symmetric. Note that when $A$ is singular, it is possible that the alleged pseudoinverse $X=B^+(ABB^+)^+$ of $AB$ satisfies all assertions in your three bullet points but fails to satisfy the fourth property. For instance, consider $$ A=\pmatrix{1&0\\\ 1&0},\ B=\pmatrix{1&1\\\ 0&1},\ AB=\pmatrix{1&1\\\ 1&1},\ \color{red}{(AB)^+=\frac14\pmatrix{1&1\\\ 1&1}}. $$ Then $$ B^+=\pmatrix{1&-1\\\ 0&1},\quad ABB^+=A,\quad (ABB^+)^+=\frac12\pmatrix{1&1\\\ 0&0}. $$ Hence the alleged pseudoinverse of $AB$ is given by $$ \color{red}{X=B^+(ABB^+)^+=\frac12\pmatrix{1&1\\\ 0&0}} \
eq(AB)^+. $$ It is easy to verify that $(AB)X(AB)=AB,\ X(AB)X=X$ and $(AB)X$ is symmetric. Yet $X(AB)=A^T$ is not symmetric.