First simplify the expression :
$ac + a + c + 1 \gt 3 \iff ac + a+c \gt 2 \iff 1/b + a+ c \gt 2 \iff 1 + ab+bc \gt 2b $
We should prove $1+ab+bc \gt 2b$ . Use the condition $a\le b\le c $ :
$a\le b\le c \iff 2a \le a+b \le a+c \to a+b\le a+c$
From these we have :
$a+b\le a+c \iff ab + b^2 \le ab + bc \iff ab + b^2 +1 \le ab + bc+ 1$
If we prove $ab + b^2 +1 \gt 2b $ then problem is solved :
$ab + b^2 +1 \gt 2b \iff ab + (b-1)^2 \gt 0$
which is obvious because $ab \gt 0 $ and $(b-1)^2 \gt 0$
Done !