Ben, here's a better suggestion. You can stretch a circle to make an ellipse and, if you start with a unit circle, area is magnified by the factor of $ab$, where $a$ and $b$ are the semi-axes, as usual. Take a point at $(-R,0)$ inside the unit circle and consider the sector it subtends to $(1,0)$ and $(\cos t, \sin t)$. You can find the area pretty easily: I get $\frac 12(t+R\sin t)$. Now stretch by the fudge factor and figure out how to match up $R$ with your focus and $t$ with your arbitrary point on the ellipse.