Correct way to solve would be $$ \frac {dy}{dx} + 2y = 0 \implies \frac {dy}y = -2dx \implies \int \frac {dy}y = -2\int dx \implies \ln y = -2x + C_1 \implies \\\ y = e^{C_1} e^{-2x} = Ce^{-2x} $$
Correct way to solve would be $$ \frac {dy}{dx} + 2y = 0 \implies \frac {dy}y = -2dx \implies \int \frac {dy}y = -2\int dx \implies \ln y = -2x + C_1 \implies \\\ y = e^{C_1} e^{-2x} = Ce^{-2x} $$