For any $\delta>0$, you can use "$M$-test" on $[\delta, \infty)$: say $$ \sqrt x e^{-n^2x}=\sqrt x e^{-n^2x/2}e^{-n^2x/2}\leq C\cdot e^{-n^2\delta/2}\leq C\cdot e^{-n\delta/2} , $$ where $C=\sup_{x\in[0, \infty)}\sqrt x e^{-x/2}$. So $f$ is continous on every $[\delta, \infty)$.