Let: $b=AB$, $c=AC$, $d=AD$, $e=AE$, $\alpha=\angle BAC=\angle CAD=\angle DAE$.
From the bisector theorem we get: $e=2c$ and $d={3\over2}b$. From the cosine law we then obtain: $$ b^2+c^2-2bc\cos\alpha=4,\quad c^2+{9\over4}b^2-3bc\cos\alpha=9,\quad {9\over4}b^2+4c^2-6bc\cos\alpha=36. $$ We can easily eliminate $bc\cos\alpha$ and solve for $b^2$ and $c^2$, obtaining $b=2\sqrt{10}$, $c=3\sqrt6$. Hence $e=6\sqrt6$ and the perimeter can be computed.