Let $x=\cos{t},y=\sin{t}$, where $t\in [0.2\pi)$, then we have
$\begin{array}\\\ f&=a-2axy+bx^2\\\ &=a-2a\sin{t}\cos{t}+b\cos^2{t}\\\ &=-a\sin{2t}+\displaystyle\frac{b}{2}\cos{2t}+a+\frac{b}{2}\\\ &=\displaystyle\sqrt{\frac{b^2}{4}+a^2}\sin(2t+\phi)+a+\frac{b}{2}\\\ &\geq-\displaystyle\sqrt{\frac{b^2}{4}+a^2}+a+\frac{b}{2}\\\ \end{array} $
where $\displaystyle\phi=\arctan(\frac{b}{-2a})\in[0,2\pi)$.