For a concrete counterexample, consider $R=M_2(K)$ and the idempotent $e=\begin{pmatrix} 1 & 0 \cr 0 & 0 \end{pmatrix}$. Let $r=\begin{pmatrix} a & b \cr c & d \end{pmatrix}$ and $s=\begin{pmatrix} a' & b' \cr c' & d' \end{pmatrix}$, then we have $$ \phi(r)\phi(s)=\begin{pmatrix} aa' & 0 \cr 0 & 0 \end{pmatrix}\
eq \begin{pmatrix} aa'+bc' & 0 \cr 0 & 0 \end{pmatrix}=\phi(rs). $$