There are many ways of deriving the $i$-th term.
One easy way is the following:
Notice that if the $i$-th term is $t_i$ then
$t_2 - t_1 = 1$
$t_3 - t_2 = 2$
$.$
$.$
$.$
$t_i - t_{i-1} = i-1$
Add all the above equations to obtain
$t_i - 1 = \frac{i(i-1)}{2}$
or, $t_i = \frac{1}{2}(i^2 - i + 2)$
Finally
$\displaystyle \sum_{i=1}^n t_i = \frac{1}{2} \left(\displaystyle \sum_{i=1}^n i^2 - \displaystyle \sum_{i=1}^n i + \displaystyle \sum_{i=1}^n 2 \right) = \frac{1}{2} \left[\frac{n(n+1)(2n+1)}{6} - \frac{n(n+1)}{2} + 2n\right] = \frac{n(n^2+5)}{6}$