Let $n_1 < n_2 < n_3$ ,then the limit of $i$ will converges to x.
By the density of $Q$ , there will be a $n_1$ that $x−1$ < $n_1$ < $x+1$ Therefore, $x− 1$ < $r_n$ < $x+ 1$ Notices that there exists infinitely many rational numbers belong to the interval and hence, it is always possible.