Let $\sin{x}=a$ and $\cos{x}=b$.
Hence, $a^2+b^2=1$ and by AM-GM we obtain: $$\sec x+\csc x+\sec^{2}x+\csc^{2}x=$$ $$=\frac{a+b}{ab}+\frac{1}{a^2b^2}\geq\frac{2\sqrt2}{\sqrt{a^2+b^2}}+\frac{4}{(a^2+b^2)^2}=4+2\sqrt2.$$ The equality occurs for $a=b=\frac{1}{\sqrt2}$, which says that we got a minimal value.