Let's start with $\text{prox}_h(x) = \arg \min_u f(\lambda u) + \frac12 \| u - x \|^2$.
Let's rewrite this optimization problem in terms of $w = \lambda u$. Once we find $w^\star$, which is an optimal choice of $w$, we will have \begin{align*} u^\star &= \frac{1}{\lambda} w^\star \\\ &= \frac{1}{\lambda} \arg \min_w \quad f(w) + \frac12 \left\| \frac{w}{\lambda} - x \right \|^2 \\\ &= \frac{1}{\lambda} \arg \min_w \quad f(w) + \frac{1}{2\lambda^2} \| w - \lambda x \|^2 \\\ &= \frac{1}{\lambda} \text{prox}_{\lambda^2 f}(\lambda x). \end{align*}