If $A: H \to H$ is self-adjoint, then $A$ is bounded (Hellinger Toeplitz !).
If $r(A)= \max\\{|\lambda|: \lambda \in \sigma(A)\\}$ denotes the spectral radius of $A$, then it is well-known that $r(A)=||A||$, if $A$ is self-adjoint.
Hence, if $\sigma(A)=\\{0\\}$, then $r(A)=0$, hence $A=0.$