Notice that because $C=A+B$ , then: $$~\mathsf P(C=z\mid A=x, B=y) ~ = ~ \begin{cases} 1 &:& x+y=z~,~x\in\\{0,1\\}~,~y\in \\{0,1\\}\\\\[0.5ex]0 &:& \text{elsewhere}\end{cases}$$
So, therefore: $$\begin{align} \mathsf P(A=x, B=y, C=z) ~ = ~ & \mathsf P(A=x) ~ \mathsf P(B=y) ~ \mathbf 1_{x+y=z} \\\\[1ex] = ~ & \tfrac 1 4 ~ \mathbf 1_{x\in\\{0,1\\}~,~y\in \\{0,1\\}~,~z=x+y} \end{align}$$
Because $~\mathsf P(A=x)~=~\tfrac 12~\mathbf 1_{x\in \\{0, 1\\}}~$ and likewise for the p.m.f. of $B$.
$\Box$