You prove directly : $|f(x)-f(y)| = |x-y|·|1-\left(\frac{x+y}{2}\right)|< |x-y|$ is true for at least one of the variables $ > 0$ and $< 1$.
You prove directly : $|f(x)-f(y)| = |x-y|·|1-\left(\frac{x+y}{2}\right)|< |x-y|$ is true for at least one of the variables $ > 0$ and $< 1$.