\begin{align} f_W(w) = \int_\mathbb{R} f_X(x)\; f_Y(x-w)\;\mathrm{d}x = \int_\mathbb{R} \mathbb{1}_{x\in(0,1)} \mathbb{1}_{x-w\in(0,1)}\mathrm{d}x = \int_{(0,1)\cap(w,1+w)} \mathrm{d}x = (1 -|w|)\mathbb{1}_{|w|<1} \end{align}
\begin{align} f_W(w) = \int_\mathbb{R} f_X(x)\; f_Y(x-w)\;\mathrm{d}x = \int_\mathbb{R} \mathbb{1}_{x\in(0,1)} \mathbb{1}_{x-w\in(0,1)}\mathrm{d}x = \int_{(0,1)\cap(w,1+w)} \mathrm{d}x = (1 -|w|)\mathbb{1}_{|w|<1} \end{align}