Ok, i figured it out:
> Theorem 1 (Rotman, Introduction to Homological Algebra, Thm 4.86): Let $L$ be flat $R$-module, $E$ finitely-presented $R$-module and $M$ any $R$-module. Then $L \otimes_R Hom_R(E,M) \cong Hom_R(E,M \otimes L)$.
>
> Theorem 2 (Rotman, Introduction to Homological Algebra, Thm 4.85): Let $M,E$ be $R$-modules, $E$, finitely presented, $S$ an $R$-algebra. Then $Hom_R(E,M) \cong Hom_S(E \otimes_R S, M)$.
Apply Theorem 1 with $E=k$, $L=N$ to get $N \otimes_R Hom_R(k,M) \cong Hom_R(k,M \otimes N)$. Now apply Theorem 2 to $Hom_R(k,M \otimes N)$ to get $Hom_R(k,M \otimes N) \cong Hom_S(k \otimes S,M \otimes N)$.