Answer to the question:
By induction $\forall \ n \in \mathbb N\ \ \ v \circ u^{n+1} - u^{n+1} \circ v = (n+1)u^n $.
Define $\| u\|$, algebra norm.
$\forall \ n \in \mathbb N, \ (n+1)\| u^n\|≤2\| v\| \| u^{n+1}\|$
Hence $\forall \ n \in \mathbb N, \ (n+1)\| u^{n+1}\|≤2\| v\|\| u\| \| u^{n+1}\| $
If $\forall \ n \in \mathbb N, \ u^{n+1} \
eq 0$, there is a contradiction with the last inequality.
So $\exists \ n \in \mathbb N, \ u^{n} \
eq 0$ and $u^{n+1} = 0 \ $ contradiction with the first equality.